MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in lots of fields. This is a detailed overview of the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is really a layered carbon nitride inorganic non-metallic material comprising M, A, X elements around the periodic table, collectively called “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the key group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, the 3 aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is actually a new kind of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, consisting of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A refers to the main-group elements, and X refers to the elements of C and N. The MXene material is a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have a wide range of applications in structural materials. For instance, Ti3SiC2 is a very common MAX material with good high-temperature performance and oxidation resistance, which could be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also used in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often used in energy materials. For example, K4(MP4)(P4) is one in the MAX materials with high ionic conductivity and electrochemical activity, which can be used as a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What Exactly are MXene materials?
MXene materials really are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The top of MXene materials can communicate with more functional atoms and molecules, along with a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually are the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials certainly are a new form of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are widely used in energy storage and conversion. For instance, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials could also be used as catalysts in fuel cells to improve the activity and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For instance, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For instance, MXene materials can be used as gas sensors in environmental monitoring, which could realize high sensitivity and high selectivity detection of gases. In addition, MXene materials could also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, using the continuous progress of technology and science and also the increasing demand for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials is going to be further expanded and improved. The subsequent aspects could become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Down the road, new preparation technologies and methods can be further explored to understand a more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, but there is still room for more optimization. In the future, the composition, structure, surface treatment along with other elements of the fabric can be studied and improved thorough to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been popular in numerous fields, but you may still find many potential application areas to become explored. Down the road, they can be further expanded, including in artificial intelligence, biomedicine, environmental protection along with other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in numerous fields. With the continuous progress of science and technology and also the continuous improvement of application demand, the preparation technology, performance optimization and application regions of MAX and MXene materials will likely be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.